CUTI-1: A Novel Tetraspan Protein Involved in C. elegans CUTicle Formation and Epithelial Integrity
نویسندگان
چکیده
The nematode cuticle is a tough extracellular matrix composed primarily of cross-linked collagens and non-collagenous cuticulins. It is required for nematode motility and protection from the external environment. Little is known about how the complex process of cuticle formation has been adapted to the specialized requirements of the nematode cuticle, which is structurally and compositionally unique from other organisms. The C. elegans gene cuti-1 (CUTicle and epithelial Integrity) encodes a nematode-specific protein. We have shown that CUTI-1 is expressed in the epithelia and in seam cells. Within these tissues the expression of cuti-1 mRNA cycles throughout development in line with the molting cycle, a process that involves synthesis of a new cuticle. In addition, knockdown of cuti-1 by RNA interference (RNAi) results in worms that display post-embryonic phenotypes related to cuticle dysfunction and defects in epithelial integrity. This is one of the first reports of a nematode-specific protein involved in extracellular matrix formation. It provides further insight into how novel ways have evolved to regulate the formation of the cuticle, which is the primary protective barrier and skeletal component of nematodes.
منابع مشابه
mua-3, a gene required for mechanical tissue integrity in Caenorhabditis elegans, encodes a novel transmembrane protein of epithelial attachment complexes
Normal locomotion of the nematode Caenorhabditis elegans requires transmission of contractile force through a series of mechanical linkages from the myofibrillar lattice of the body wall muscles, across an intervening extracellular matrix and epithelium (the hypodermis) to the cuticle. Mutations in mua-3 cause a separation of the hypodermis from the cuticle, suggesting this gene is required for...
متن کاملA highly conserved, inhibitable astacin metalloprotease from Teladorsagia circumcincta is required for cuticle formation and nematode development☆
Parasitic nematodes cause chronic, debilitating infections in both livestock and humans worldwide, and many have developed multiple resistance to the currently available anthelmintics. The protective collagenous cuticle of these parasites is required for nematode survival and its synthesis has been studied extensively in the free-living nematode, Caenorhabditis elegans. The collagen synthesis p...
متن کاملIdentification of a novel gene family involved in osmotic stress response in Caenorhabditis elegans.
Organisms exposed to the damaging effects of high osmolarity accumulate solutes to increase cytoplasmic osmolarity. Yeast accumulates glycerol in response to osmotic stress, activated primarily by MAP kinase Hog1 signaling. A pathway regulated by protein kinase C (PKC1) also responds to changes in osmolarity and cell wall integrity. C. elegans accumulates glycerol when exposed to high osmolarit...
متن کاملCaenorhabditis elegans mutants resistant to attachment of Yersinia biofilms.
The detailed composition and structure of the Caenorhabditis elegans surface are unknown. Previous genetic studies used antibody or lectin binding to identify srf genes that play roles in surface determination. Infection by Microbacterium nematophilum identified bus (bacterially unswollen) genes that also affect surface characteristics. We report that biofilms produced by Yersinia pestis and Y....
متن کاملTetraspanin protein (TSP-15) is required for epidermal integrity in Caenorhabditis elegans.
Epidermal integrity is essential for animal development and survival. Here, we demonstrate that TSP-15, a member of the tetraspanin protein family, is required for epithelial membrane integrity in Caenorhabditis elegans. Reduction of tsp-15 function by mutation or by RNA interference elicits abnormalities of the hypodermis, including dissociation of the cuticle and degeneration of the hypodermi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS ONE
دوره 4 شماره
صفحات -
تاریخ انتشار 2009